
Detection of single and mixed VOCs by smell and by sensory

irritation

Introduction

Complaints about the quality of the air in indoor
environments very often involve symptoms of eye,
nose, and throat irritation (Hodgson, 2002; Tsai and
Gershwin, 2002), and sometimes perception of odors
(Engvall et al., 2002). To understand and attempt to
eliminate complaints based on these reactions, we
need to know the levels at which chemicals present
indoors begin to produce an olfactory response and
those at which they begin to produce a chemesthetic
response, such as sensory irritation. Chemesthetic

responses in the mucosae of the face are principally
mediated by the trigeminal nerve. There are a number
of compilations of human odor thresholds (Fazzalari,
1978; AIHA, 1989; Devos et al., 1990; van Gemert,
1999) but the variability of reported values is so high,
often 3 or more orders of magnitude, that it hampers
the practical applicability of the data. Regarding
ocular and nasal chemesthetic thresholds, it is crucial
to control for odor biases since almost all irritants
also evoke an odor sensation and, as a rule, do so
beginning at lower concentrations than those produ-
cing irritation. Such control has not been common in
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Practical implications
Concentration-detection functions for the chemesthetic and olfactory detectability of VOCs have shown that, even
when nasal pungency and eye irritation begin to be evoked at concentrations orders of magnitude larger than those
evoking odor, they sharply increase in detectability to become clearly noticeable. In contrast, odor detectability
increases with concentration at a much lower rate. As a result, any fixed reduction (e.g., 10-times) in the concentration
of a VOC will reduce detectability of sensory irritation much more dramatically than detectability of odor, within their
respective ranges. Concentration-detection functions are particularly informative when employed to probe into the
rules of dose- and response-additivity in mixtures. Our results for olfaction, and to a lesser extent for chemesthesis,
indicate that additivity of detection of individual VOCs in mixtures is level-dependent: As detectability increases, the
degree of additivity decreases. This suggests that a substantial improvement of perceived air quality could follow from
control of just the few dominating chemosensory sources.
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compilations of sensory irritation thresholds (Ruth,
1986).
In 1989 we started to measure odor, nasal pungency,

and eye irritation thresholds along homologous chem-
ical series using a uniform procedure. The approach
included vapor-phase measurements via gas chroma-
tography, a simple but practical static-dilution delivery
system (cf., Cain et al., 1992), and a sensory technique
based on a forced-choice procedure that controlled for
biases and for differences in response criterion across
participants (Cometto-Muñiz and Cain, 1990). To
control for odor biases in measurements of nasal
pungency thresholds, we tested subjects lacking a
functional sense of smell (called anosmics), as deter-
mined by a standardized clinical olfactory test (Cain,
1989). This strategy to separate trigeminal from olfac-
tory detection of volatile organic compounds (VOCs)
was later followed by two additional strategies (Co-
metto-Muñiz and Cain, 1998): (1) measuring eye
irritation thresholds in both anosmics and normosmics
(i.e., subjects with normal olfaction) and (2) measuring,
also in anosmics and normosmics, nasal localization or
lateralization thresholds, that is, the ability to deter-
mine whether a VOC was presented to the right or left
nostril when clean air is simultaneously inhaled via the
contralateral nostril. Previous research determined that
such localization is mediated by trigeminal, not olfac-
tory, input (Kobal et al., 1989). The various strategies
produced a similar outcome: olfactory thresholds for
homologous VOCs typically lay between 1 and 5 orders
of magnitude below trigeminal thresholds (see review
in Cometto-Muñiz, 2001).
In a study of nasal localization of the neat

chemicals benzaldehyde and eucalyptol, Hummel
and colleagues found that normosmics (n ¼ 17)
outperformed anosmics and hyposmics (n ¼ 35) in
terms of the total sum of correct lateralizations, but
no vapor concentrations were quantified and no
thresholds were measured (Hummel et al., 2003).
Another investigation of nasal localization in anos-
mics (n ¼ 5) and normosmics (n ¼ 4) for 1-propanol,
1-butanol, and 1-hexanol included measurement of
thresholds and vapor quantification of all stimuli by
gas chromatography, and found higher thresholds
(i.e., lower sensitivity) in anosmics by a factor of 1.27,
but the difference failed to achieve significance
perhaps due to the small number of subjects (Co-
metto-Muñiz and Cain, 1998). Even if the difference
in nasal trigeminal sensitivity between anosmics and
normosmics is real, it pales compared with the
differences between olfactory and trigeminal sensitiv-
ity mentioned above.
The absolute value of odor and sensory irritation

thresholds measured under these standardized condi-
tions might not directly represent thresholds obtained
under actual whole-body exposures, but their consis-
tency and the wide variety of VOCs tested proved to

be extremely useful to establish robust quantitative
structure-activity relationships (QSARs) between po-
tency for odor (Abraham et al., 2002), for nasal
pungency (Abraham et al., 1996; Abraham et al.,
1998a), and for eye irritation (Abraham et al., 1998b;
Abraham et al., 2003) and associated physicochemical
characteristics.
A further step in understanding which VOCs might

evoke sensations of smell and sensory irritation and
under which conditions this might be expected to
occur entails studying the detection of mixtures of
chemicals. Occupants of buildings are exposed to
dozens, perhaps hundreds, of chemicals at low con-
centrations. In the series of experiments described here
we have begun to address the issue of chemosensory
perception of mixtures by focusing on the simplest
case: binary mixtures. The approach shared important
features with our previous studies of single VOCs:
vapor quantification by gas chromatography, a static
vapor-delivery technique, and a forced-choice proce-
dure. Rather than measuring a ‘‘threshold’’ value
under some performance criterion we measured com-
plete concentration-detection (also called psychomet-
ric or detectability) functions. These functions
describe the probability of chemosensory detection
as a function of concentration. They range from
where detection occurs at chance, i.e., subthreshold
level, to where detection becomes virtually perfect,
i.e., beginning of the suprathreshold level (Cometto-
Muñiz et al., 2002). Knowledge of the psychometric
function for individual VOCs presented in mixtures
facilitates a comprehensive and dynamic quantitative
understanding of the rules of dose- and response-
additivity in mixtures that the simple measure of a
‘‘threshold’’ value cannot provide (Cometto-Muñiz
et al., 1997). For example, these functions are quite
revealing in terms of investigating the level-depend-
ency of such rules.
At this early stage in our understanding of the rules

for chemosensory detection of chemical mixtures,
selection of the compounds to test is somewhat
arbitrary. We have chosen the following VOC pairs:
(1) 1-butanol/2-heptanone (2) butyl acetate/toluene,
and (3) ethyl propanoate/ethyl heptanoate. These
specific compounds or their chemical class (e.g., ethyl
esters) are commonly found in indoor air (e.g.,
Rothweiler and Schlatter, 1993; Wolkoff and Wilkins,
1994; Kostiainen, 1995; Knudsen et al., 1999) and in
model mixtures thought to be representative of indoor
environments (Mølhave et al., 1991). The selected three
pairs present varying contrasts. The first pair com-
prised two aliphatic, lineal, flexible molecules, with
oxygen-containing but different chemical functionali-
ties, and capable of interacting via hydrogen-bonds.
The second pair presented a sharper contrast between
components from a structural-chemical criterion:
aliphatic vs. aromatic, lineal vs. cyclic, flexible vs.
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rigid, with little possibility of interacting via hydrogen-
bonds. The third pair included chemically similar
components but allowed us to probe the role of a
contrasting carbon chain length, within a homologous
series, on the rules for detectability of mixtures.

Materials and methods

All participants provided written informed consent on
forms approved by the Human Research Protections
Program (HRPP) of the University of California, San
Diego. HRPP also approved the study protocol.

Subjects

For experiments on odor, all subjects performed in
the normosmic range of a standardized clinical
olfactory test (Cain, 1989) and were all non-smokers.
They ranged in age from 18 to 56 years. In each
experiment we typically tested a group of 10–20
normosmics, with an approximately equal number of
males and females.
For experiments on eye irritation, the same subject

characteristics as above applied and, in addition,
participants were not usual wearers of contact lenses.
For experiments on nasal pungency, all subjects were

anosmics (Cain, 1989) and non-smokers. They ranged
in age from 20 to 74 years. In each experiment we
typically tested 4–7 persons, with an approximately
equal number of males and females. Most of these
participants were either congenital or head-trauma
anosmics. We avoided anosmics who might, under
certain conditions, regain some of their olfactory
ability; for example, those with nasal sinus disease.

Stimuli

Six single chemicals and three pairs of binary mixtures
were studied. The mixtures were: 1-butanol (99.8%
purity) and 2-heptanone (98%), butyl acetate (99+%)
and toluene (99.8%), and ethyl propanoate (97+%)
and ethyl heptanoate (98+%). Mineral oil (Light,
Food Chemical Codex quality) served as solvent and
blank.
All stimuli, single chemicals and mixtures, were

quantified in the headspace, i.e., the vapor-phase, of
the containers by gas chromatography (GC) (flame
ionization detector or FID) (Cometto-Muñiz et al.,
2003b). Weekly GC measurements were performed to
confirm stability.

Procedure

We employed either a two- or a three-alternative
forced-choice procedure against blanks. Detection
probability (P) was corrected for chance and standard-
ized by adjusting it to a scale ranging from 0.0 for

chance detection to 1.0 for perfect detection according
the following formula (Macmillan and Creelman,
1991):

P ¼ ðmp� 1Þ=m� 1;

where P ¼ detection probability corrected for chance,
m ¼ number of alternative forced-choices, and p ¼
proportion correct. Psychometric functions for single
stimuli were obtained by an ascending concentration
approach (cf., Cometto-Muñiz et al., 2002). Mixtures
were presented in irregular order. The containers were
adapted with either two nosepieces (Cometto-Muñiz
et al., 2000) or an eyepiece (Cometto-Muñiz et al.,
2001) for nasal and ocular stimulation, respectively (see
Fig. 1).

Preparation of mixtures

The concentration of each component in a mixture was
selected based on the detectability of that concentra-
tion of the component as measured in its respective
psychometric function. In the case of the mixture
1-butanol/2-heptanone, the mixtures were prepared by
adding to the concentration series of one chemical
(taken from its psychometric function) a fixed concen-
tration of the second chemical corresponding to a
known detectability, for example P ¼ 0.20 (taken from
the psychometric function of the second chemical) (cf.,
Cometto-Muñiz et al., 1999). In this way, three more
series were created with increasing fixed concentrations
of the second chemical corresponding to P ¼ 0.40,
0.60, and 0.80. The same process was repeated but now
using the concentration series of the second chemical to
which fixed concentrations of the first chemical (cor-
responding to P ¼ 0.20, 0.40, 0.60, and 0.80) were
added. Testing these stimuli produced families of
psychometric functions where the added fixed concen-
tration of one component (e.g., that corresponding to
P ¼ 0.20) could be transformed into an added ‘‘equiv-
alent concentration’’ of the other component. If these
functions for mixtures, based on ‘‘equivalent concen-
trations’’ of one chemical into the other (and vice
versa), follow the same trend as the functions for one or
the other single chemical, then it means that the
outcome supports a model of dose-addition between the
two components of the mixtures.
In the case of the other two mixtures (butyl acetate/

toluene and ethyl propanoate/ethyl heptanoate), pre-
paration of the mixtures was different from the above
in the sense that the approach principally tested for
response-addition. That is, would the actual detectabil-
ity of the mixtures be approximated simply by the
combination of the detectabilities of the individual
components? If so, the following formula based on an
assumption of complete additivity of detection for
individual chemicals should predict the experimental
results (Feller, 1968–1971):

Cometto-Muñiz et al.

110



Pdet:A;B ¼ 1� ½ð1� Pdet:AÞð1� Pdet:BÞ ð1Þ

where Pdet.A,B ¼ probability of detection of the binary
mixture of chemicals A and B, Pdet.A ¼ probability of
detection of A alone, and Pdet.B ¼ probability of detec-
tion of B alone. In this context, preparation of the
mixtures entailed: (1) Choosing two or more detectabil-
ity levels, e.g., P ¼ 0.8 and P ¼ 0.4. (2) From the
already measured psychometric function of each com-
ponent, finding the concentrationproducing these levels.
(3) Testing, within the same experiment and subjects, the
detectability of the concentration of the single chemicals
A and B producing, for example, P ¼ 0.8, and that of
three binary mixtures: (a) one where A is at a concen-

tration producing 3/4 of 0.8 (i.e.,P ¼ 0.6) andBat 1/4 of
0.8 (i.e., P ¼ 0.2) (b) one where A is at a concentration
1/2 of 0.8 (i.e.,P ¼ 0.4) and B also at 1/2 of 0.8 (i.e.,P ¼
0.4), and (c) onewhereA is at a concentration producing
1/4 of 0.8 (i.e., 0.2) andB at 3/4 of 0.8 (i.e.,P ¼ 0.6). This
gives a total of five stimuli: two are single (one per
chemical, atP ¼ 0.8 in our example), and the other three
are the mixtures just described. Note that, for the three
mixtures, the sum of the individual detectabilities of A
and B always equal 0.8, the same detectability as for
single stimulus A and single stimulus B. The outcome of
the experimentwill be comparedwith that expected from
equation 1 to see if there are significant deviations from
the model assumed.

Fig. 1 Top (Left) picture of a 1900 ml glass vessel used for nasal stimulation with chemical vapors. (Right) picture of a subject being
tested birhinally (i.e., both nostrils) via the glass vessels (from (Cometto-Muñiz et al., 2000). Bottom (Left) picture of the same glass
vessels adapted with an eyepiece for ocular stimulation. (Right) picture of a subject being tested for eye irritation (from Cometto-
Muñiz et al., 2001)
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Results

Psychometric functions for single chemicals

Figure 2 shows odor, eye irritation, and nasal pun-
gency detectability functions for each single chemical.
Confirming previous results, olfactory functions lay at
concentrations orders of magnitude lower than trige-
minal functions and, within a homologous series (i.e.,
ethyl propanoate and heptanoate), the longer homolog
was more potent than the shorter homolog both in
terms of odor and of sensory irritation (Cometto-
Muñiz, 2001). Within the chemesthetic modality, the
ocular and the nasal mucosa were approximately
equally sensitive, with a slightly higher sensitivity for
the eye in the cases of 2-heptanone and ethyl heptano-

ate (interestingly, the largest compounds tested). The
rate of growth for chemesthetic functions was higher
than that for olfactory functions: it took an increase
between 0.5 and 1.5 orders of magnitude in concen-
tration for sensory irritation detectability to rise from
chance to virtually perfect but it took an increase
between 2 and 4.5 orders of magnitude for the same
change to occur for odor detectability.

Detectability of mixtures

A. Mixtures of 1-butanol/2-heptanone. The straightfor-
ward ‘‘detection probability corrected for chance’’, or
‘‘P’’, that we have used in Fig. 2, and that ranges from
0.0 (i.e., chance detection) to 1.0 (i.e., perfect detec-
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tion), can be converted into what is called a Z-score. A
normal distribution table is used to convert P-values
into Z-scores. This transformation assumes that the
measured values are normally distributed against the
independent variable, in this case log p.p.m. Under this
assumption, concentration-detection functions that are
shaped like an ogive, such as those in Fig. 2, have the
convenient feature of becoming linear when the P for
each concentration is transformed into a Z-score via
the normal distribution table (see Gescheider, 1997).
Figure 3 illustrates that detectability (expressed as
Z-scores) plotted as a function of butanol concentra-
tion (actual or equivalent) follows a similar trend
whether the stimulus consists of butanol alone, hepta-
none alone (converted to butanol-equivalent concen-
trations) or mixtures of the two (where the heptanone
component was converted to butanol-equivalent).
Comparable results are obtained if detectability is
plotted as a function of heptanone concentration,
actual or equivalent (results not shown). The outcome
gauged across this broad range of detectability suggests
that, as a first approximation, dose-addition holds for
the detection of odor, eye irritation, and nasal pun-
gency from mixtures of butanol and heptanone.

B. Mixtures of butyl acetate/toluene. As described
above, the strategy here tested whether mixtures of
the two compounds in complementary proportions
departed significantly or not from a model of

response-additivity of individual components, as ex-
pressed in equation 1. The outcome for chemesthetic
detectability at both sites (eyes and nose) revealed a
common feature: At relatively high detectability
levels, the mixtures tended to fall short of complete
additivity. This tendency was more pronounced for
eye irritation than for nasal pungency. Figure 4 (top)
illustrates the outcome for eye irritation, where three
levels of detectability were probed, and Fig. 4 (bot-
tom) illustrates it for nasal pungency, where four
levels of detectability were probed. An analysis of
variance (ANOVA) gave statistical support to the
observed trends: For eye irritation, there were signi-
ficant differences among the three levels of detecta-
bility (P < 0.001) and among the five types of stimuli
(P < 0.02), but not for their interaction. For nasal
pungency, there were significant differences among the
four levels of detectability (P < 0.01), no significant
differences for the five types of stimuli but a signifi-
cant interaction between the two factors (P ¼ 0.05).
The significance of the interaction indicates that the
trend seen across type of stimulus is not uniform
among the four levels of detectability. Such trend is
relatively flat for the two lower detectability levels but
it is shaped like a ‘‘U’’ for the two higher levels
(Cometto-Muñiz et al., 2001).
The outcome for olfactory detectability revealed a

qualitative similarity with the outcome for chemesthe-
sis: Additivity of detection in olfaction also held at
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relatively low levels of detectability and decreased
significantly at relatively high levels (Fig. 5). Never-
theless, in quantitative terms, the outcome differed from
that of chemesthesis: The decrease in additivity was
more pronounced for olfactory than for trigeminal
detection (Cometto-Muñiz et al., 2003a).

C. Mixtures of ethyl propanoate/ethyl heptano-
ate. Testing of this mixture followed the same strat-
egy as with the previous one, i.e., a direct test of
response-addition. The outcome for ocular and nasal
chemesthetic detection paralleled that obtained with the
butyl acetate/toluene pair in that: (1) at low detecta-
bility levels, eye irritation and nasal pungency did not
depart from the values calculated from a model
assuming complete additivity of detection (equation
1), and (2) at high detectability levels, departure from
complete additivity was more pronounced for eye
irritation than for nasal pungency (Fig. 6). In fact, for
the present mixture, nasal pungency at high detecta-
bility levels did not depart from complete additivity.
Even when the approach adopted to test the ethyl

propanoate/ethyl heptanoate mixture directly tested
response-addition, it is possible to use the detectability
obtained for the single compounds at low and at high
detectability to attempt calculation of ‘‘equivalent
concentration’’ and look at dose-addition as done for
1-butanol/2-heptanone. When this is done, the same
trends as observed in Fig. 6 and mentioned above are
obtained (Cometto-Muñiz et al., 2004).
In terms of olfactory detectability, the mixture of

ethyl propanoate and heptanoate showed the same
general trends observed so far: Complete additivity at
relatively low levels of detectability that breaks down
at higher levels (Fig. 7). For this mixture, though, the
departure of odor detection from complete additivity
at high levels of detectability was far less dramatic than
that observed for the mixture butyl acetate/toluene
(compare Fig. 7 with Fig. 5).

Discussion

Measurement of psychometric functions for odor and
sensory irritation detectability of VOCs provides us
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with a more comprehensive understanding of the
olfactory and chemesthetic sensory modalities than
that gained by measuring a ‘‘threshold’’ response. In
terms of detection of single VOCs we have confirmed
that, for any given compound, odor detection occurs at
concentrations orders of magnitude lower than sensory
irritation detection (Cometto-Muñiz, 2001), but also
we have shown that the rate of growth for chemesthetic
detectability, ocular or nasal, is much steeper than that
for olfactory detectability (Cometto-Muñiz et al.,
2002). As a direct practical consequence, we can state
that any fixed reduction in the concentration of VOCs
polluting an environment (e.g., a 2-times, 5-times, or
10-times reduction) will have a much more dramatic
effect on detection of sensory irritation than in detec-
tion of odor. Thus, odors are much more difficult to
eliminate by dilution.
An important observation made regarding the com-

parative chemesthetic potency of members of homol-
ogous chemical series relates to the appearance of a
cut-off effect. Within such series, the vapor concentra-
tion threshold necessary to evoke mucosal sensory
irritation decreases (i.e., potency increases) with
carbon chain length, but only up to a certain size
(Cometto-Muñiz et al., 1998). Eventually, a homolog
is reached that lacks the ability to evoke chemesthesis
reliably, even at vapor saturation. The failure extends
to all ensuing homologs. Two mechanisms may
account for the cut-off (Franks and Lieb, 1990). One
rests on a physical restriction whereby the saturated
vapor pressure of the VOC at room temperature falls
below the threshold. The other rests on a biological

restriction whereby a molecule lacks a key property to
trigger transduction; for example, it could exceed the
size that allows it to interact effectively with a target
site or to fit into a binding pocket in a receptive
macromolecule. We are at present investigating whe-
ther the cut-off effect observed within a number of
homologous series is likely to rest on a physical or on a
biological mechanism. Our strategy rests on: (1)
Heating the liquid source of the vapor stimulus from
23�C (room temperature) to 37�C (body temperature),
thus substantially increasing the available vapor con-
centration. If the cut-off persists despite the increased
concentration, a physical cut-off is unlikely. (2) Meas-
uring psychometric functions, not just a ‘‘threshold’’,
for the 2–3 homologs bracketing the cut-off point and
quantifying how chemesthetic detectability deteriorates
with carbon chain length. (3) Sorting out the dimen-
sional commonalities among the various biological
cut-off homologs, and selected rigid comparison mol-
ecules, in order to develop a model of the maximum
molecular dimensions beyond which any VOC vapor
will fail to evoke sensory irritation. Our initial work
with the acetate and n-alcohol homologous series
suggests decyl acetate and 1-undecanol as the cut-off
homologs.
Information gathered via psychometric functions can

be especially revealing in terms of understanding the
detection of mixtures. In particular, in terms of the role
that detectability level of individual components might
play on the degree of response-addition seen in the
mixtures. We have made use of these functions to study
the olfactory and trigeminal detectability of three types
of binary mixtures, made of diversely contrasting
chemical components, focusing on a dose-addition
approach and on a response-addition approach. With-
in the context of this small number of examples, some
interesting trends begin to emerge. At relatively low
levels of detectability of the mixture components, e.g.,
0.0 < P < 0.5, both odor and sensory irritation
(ocular and nasal) are characterized by complete
additivity of detection (i.e., response-addition), irres-
pective of whether the components share considerable
(ethyl propanoate/heptanoate) or little (butyl acetate/
toluene) structural/chemical similarity. At relatively
high levels of detectability of the mixture components,
e.g., 0.5 < P < 1.0, complete additivity of detection
tended to break down only slightly for nasal pungency,
more for eye irritation, and most for odor. Neverthe-
less, only for olfactory detectability was it possible to
attenuate this breakdown by switching from a quite
dissimilar chemical pair (i.e., butyl acetate/toluene) to a
relatively similar one (i.e., ethyl propanoate/heptano-
ate) (compare Figs 5 and 7). Overall, the outcome from
these mixture studies corresponds to that of structure-
activity studies of single VOCs (Abraham et al., 2001)
in suggesting a broader chemical tuning in chemesthe-
sis than in olfaction.
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Fig. 7 Analogous to Fig. 6 but regarding odor detectability of
the pair ethyl propanoate/ethyl heptanoate. Note that the
decrease in detectability of the mixtures at high levels of detec-
tability of the individual compounds (filled circles) is evident but
less profound than for the pair butyl acetate/toluene (Fig. 5)
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What might be the physiological basis for the
observed level-dependence of chemosensory additi-
vity? Virtually all sensory systems employ neural
inhibition in the processing of information. In the
simplest and probably most common instance, the
information traveling along one line will modulate
information traveling along an adjacent line, a phe-
nomenon called lateral inhibition. Commonly, inhib-
itory influences exhibit level dependency. Research on
processing of chemosensory information has shown
the existence of strong inhibitory effects, some lateral,
some feed-forward, and some feed-backward (e.g.,
Aungst et al., 2003; Halabisky and Strowbridge,
2003). The outcome of the present research suggests
level dependence in such inhibition. At very low levels
of stimulation the systems integrate the multiple
signals from the environment. We can view this as
the information-hungry level of processing, where fine
differences get little emphasis. At progressively higher
levels of stimulation, inhibition also increases pro-
gressively and sharpens differences in ‘‘kind’’ of
stimulation. In the extreme case in olfaction, a strong

odor will inhibit the apparent presence of weaker
odors, masking them.
At this stage of understanding, we see the operation

of level-dependent inhibition both for olfaction and
chemesthesis, though more so for olfaction. This would
mean that the strongest odor would dominate percep-
tion and, to a smaller extent, the most irritating source
would dominate perception. The matter requires more
study, particularly regarding chemesthesis, where both
the eye and the nose may contribute to sensory
irritation. If the present results on mixtures can be
generalized, they lead to conclude that the stronger
components make a disproportionately large contribu-
tion to total chemosensory impact.
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Cometto-Muñiz, J.E. (2001) Physicochemical
basis for odor and irritation potency of
VOCs. In: Spengler, J.D., Samet, J. and
McCarthy, J.F., eds. Indoor Air Quality
Handbook. New York, McGraw-Hill, pp.
20.1–20.21.
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